Thursday, October 06, 2011

Essays on the Theory of Numbers: Richard Dedekind

My attention was first directed toward the considerations which form the subject of this pamphlet in the autumn of 1858. As professor in the Polytechnic School in Zürich I found myself for the first time obliged to lecture upon the elements of the differential calculus and felt more keenly than ever before the lack of a really scientific foundation for arithmetic. In discussing the notion of the approach of a variable magnitude to a fixed limiting value, and especially in proving the theorem that every magnitude which grows continually, but not beyond all limits, must certainly approach a limiting value, I had recourse to geometric evidences. Even now such resort to geometric intuition in a first presentation of the differential calculus, I regard as exceedingly useful, from the didactic standpoint, and indeed indispensable, if one does not wish to lose too much time. But that this form of introduction into the differential calculus can make no claim to being scientific, no one will deny. For myself this feeling of dissatisfaction was so overpowering that I made the fixed resolve to keep meditating on the question till I should find a purely arithmetic and perfectly rigorous foundation for the principles of infinitesimal analysis. The statement is so frequently made that the differential calculus deals with continuous magnitude, and yet an explanation of this continuity is nowhere given; even the most rigorous expositions of the differential calculus do not base their proofs upon continuity but, with more or less consciousness of the fact, they either appeal to geometric notions or those suggested by geometry, or depend upon theorems which are never established in a purely arithmetic manner. Among these, for example, belongs the above-mentioned theorem, and a more careful investigation convinced me that this theorem, or any one equivalent to it, can be regarded in some way as a sufficient basis for infinitesimal analysis. It then only remained to discover its true origin in the elements of arithmetic and thus at the same time to secure a real definition of the essence of continuity. I succeeded Nov. 24,1858, and a few days afterward I communicated the results of my meditations to my dear friend Durge with whom I had a long and lively discussion. Later I explained these views of a scientific basis of arithmetic to a few of my pupils, and here in Braunschweig read a paper upon the subject before the scientific club of professors, but I could not make up my mind to its publication, because, in the first place, the presentation did not seem altogether simple, and further, the theory itself had little promise. Nevertheless I had already half determined to select this theme as subject for this occasion, when a few days ago, March 14, by the kindness of the author, the paper Die Elemente der Funktionenlehre by E. Heine (Crelle's Journal, Vol. 74) came into my hands and confirmed me in my decision. In the main I fully agree with the substance of this memoir, and indeed I could hardly do otherwise, but I will frankly acknowledge that my own presentation seems to me to be simpler in form and to bring out the vital point more clearly. While writing this preface (March 20, 1872), I am just in receipt of the interesting paper Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen, by G. Cantor Math. Annalen, Vol. 5, for which I owe the ingenious author my hearty thanks. As I find on a hasty perusal, the axiom given in Section II. of that paper, aside from the form of presentation, agrees with what I designate in Section III. as the essence of continuity. But what advantage will be gained by even a purely abstract definition of real numbers of a higher type, I am as yet unable to see, conceiving as I do of the domain of real numbers as complete in itself.

Taken From Gutenberg

No comments:

Twitter Updates

Search This Blog

Total Pageviews