Tuesday, February 25, 2014

[1402.5418] Self-sustained asymmetry of lepton-number emission: A new phenomenon during the supernova shock-accretion phase in three dimensions

[1402.5418] Self-sustained asymmetry of lepton-number emission: A new phenomenon during the supernova shock-accretion phase in three dimensions:



During the stalled-shock phase of our 3D hydrodynamical core-collapse simulations with energy-dependent, 3-flavor neutrino transport, the lepton-number flux (nu_e minus anti-nu_e) emerges predominantly in one hemisphere. This novel, spherical-symmetry breaking neutrino-hydrodynamical instability is termed LESA for "Lepton-number Emission Self-sustained Asymmetry." While the individual nu_e and anti-nu_e fluxes show a pronounced dipole pattern, the heavy-flavor neutrino fluxes and the overall luminosity are almost spherically symmetric. LESA seems to develop stochastically from convective fluctuations, it exists for hundreds of milliseconds or more, and it persists during violent shock sloshing associated with the standing accretion shock instability. The nu_e minus anti-nu_e flux asymmetry originates predominantly below the neutrinosphere in a region of pronounced proto-neutron star (PNS) convection, which is stronger in the hemisphere of enhanced lepton-number flux. On this side of the PNS, the mass-accretion rate of lepton-rich matter is larger, amplifying the lepton-emission asymmetry, because the spherical stellar infall deflects on a dipolar deformation of the stalled shock. This deformation persists despite extremely nonstationary convective overturn behind the shock. The increased shock radius in the hemisphere of less mass accretion and minimal lepton-number flux (anti-nu_e flux maximum) is sustained by stronger convection on this side, which is boosted by stronger neutrino heating because the average anti-nu_e energy is higher than the average nu_e energy. While these different elements of the LESA phenomenon form a consistent picture, a full understanding remains elusive at present. There may be important implications for neutrino-flavor oscillations, the neutron-to-proton ratio in the neutrino-heated supernova ejecta, and neutron-star kicks, which remain to be explored.

We here report the discovery of a new type of low-mode nonradial instability, LESA, which we have observed in 3D hydrodynamical simulations with detailed, energy-dependent, three-flavor neutrino transport using the Prometheus-Vertex code

'via Blog this'

No comments:

Twitter Updates

Search This Blog

Total Pageviews