Monday, December 01, 2014

[1411.7569] Exactly solvable deformations of the oscillator and Coulomb systems and their generalization

[1411.7569] Exactly solvable deformations of the oscillator and Coulomb systems and their generalization:



"We present two maximally superintegrable Hamiltonian systems Hλ and Hη that are defined, respectively, on an N-dimensional spherically symmetric generalization of the Darboux surface of type III and on an N-dimensional Taub-NUT space. Afterwards, we show that the quantization of Hλ and Hη leads, respectively, to exactly solvable deformations (with parameters λ and η) of the two basic quantum mechanical systems: the harmonic oscillator and the Coulomb problem. In both cases the quantization is performed in such a way that the maximal superintegrability of the classical Hamiltonian is fully preserved. In particular, we prove that this strong condition is fulfilled by applying the so-called conformal Laplace-Beltrami quantization prescription, where the conformal Laplacian operator contains the usual Laplace-Beltrami operator on the underlying manifold plus a term proportional to its scalar curvature (which in both cases has non-constant value). In this way, the eigenvalue problems for the quantum counterparts of Hλ and Hη can be rigorously solved, and it is found that their discrete spectrum is just a smooth deformation (in terms of the parameters λ and η) of the oscillator and Coulomb spectrum, respectively. Moreover, it turns out that the maximal degeneracy of both systems is preserved under deformation. Finally, new further multiparametric generalizations of both systems that preserve their superintegrability are envisaged."



'via Blog this'

No comments:

Twitter Updates

Search This Blog

Total Pageviews