Sunday, March 29, 2015

[1502.04166] The extragalactic background light, the Hubble constant, and anomalies: conclusions from 20 years of TeV gamma-ray observations

[1502.04166] The extragalactic background light, the Hubble constant, and anomalies: conclusions from 20 years of TeV gamma-ray observations:



 "Ground-based observatories have been collecting 0.2-20 TeV gamma rays from blazars for about twenty years. These gamma rays can experience absorption along the line of sight due to interactions with the extragalactic background light (EBL). In this paper, we investigate the most extensive set of TeV spectra from blazars collected so far, twice as large as any other studied. We first show that the gamma-ray optical depth can be reduced to the convolution product of an EBL kernel with the EBL intensity. We extract the EBL intensity from the gamma-ray spectra, show that it is preferred at 11 sigma to a null intensity, and unveil the broad-band spectrum of the EBL from mid-UV to far IR. Our measurement shows that the total radiative content of the universe between 0.1 and 1000 microns represents 6.5+/-1.2% of the brightness of the CMB. This is slightly above the accumulated emission of stars and galaxies and constrains the unresolved sources that could have reionized the universe. We also propose a data-driven method to estimate the Hubble constant based on the comparison of local and gamma-ray measurements of the EBL, yielding H0 = 88 +/- 8(stat) +/-13(sys) km/s/Mpc. After setting the most stringent upper-limits on the redshift of four TeV blazars, we investigate the 106 intrinsic gamma-ray spectra in our sample and find no significant evidence for anomalies. We do not find evidence for the so-called "pair-production anomaly" at large optical depths, which has been used previously to place lower limits on the coupling of TeV gamma rays with axion-like particles. Finally, we investigate the impact of a modification of the pair-creation threshold due to a Lorentz invariance violation. A mild excess prevents us from ruling out an effect at the Planck energy and we constrain for the first time the energy scale of the modification to values larger than sixty percent of the Planck energy."



'via Blog this'

No comments:

Twitter Updates

Search This Blog

Total Pageviews