From Physorg.com today we can read:
"The researchers calculate that about half of the mass thrown out was calcium, which means that a couple of such supernova every 100 years would be enough to produce the high abundance of calcium observed in galaxies like our own Milky Way, and the calcium present in all life on Earth"
These are strange stars discovered by Filippenko's team at Berkeley.
To me the implication is that if these strange stars that steal a lot of helium from nearby stars, and then produce calcium, were not there; then we wouldn't be here.
Amazing.
From that note in physorg.com we can read also:
"The paper's authors note that, if these eight calcium-rich superonovae are the first examples of a common, new type of supernova, they could explain two puzzling observations: the abundance of calcium in galaxies and in life on Earth, and the concentration of positrons - the anti-matter counterpart of the electron - in the center of galaxies. The latter could be the result of the decay of radioactive titanium-44, produced abundantly in this type of supernova, to scandium-44 and a positron, prior to scandium's decay to calcium-44. The most popular explanation for this positron presence is the decay of putative dark matter at the core of galaxies.
"Dark matter may or may not exist," says Gal-Yam, "but these positrons are perhaps just as easily accounted for by the third type of supernova."
Filippenko and Li hope that KAIT and other robotic telescopes scanning distant galaxies every night in search of new supernovae will turn up more examples of calcium-rich or even stranger supernovae.
"The research field of supernovae is exploding right now, if you'll pardon the pun," joked Filippenko. "Many supernovae with peculiar new properties have been found, pointing to a greater richness in the physical mechanisms by which nature chooses to explode stars."
Provided by University of California - Berkeley (news : web)"
No comments:
Post a Comment